

Welcome to lavatory’s documentation!

Contents

	Getting Started

	Creating Retention Policies

	Example Policies

	How To Create Releases

	src
	lavatory package
	lavatory.commands package

	lavatory.policies package

	lavatory.utils package

[image: Build Status] [https://travis-ci.org/gogoair/lavatory] [image: Documentation Status] [http://lavatory.readthedocs.io/en/latest/?badge=latest] [image: PyPi Badge] [https://badge.fury.io/py/lavatory]

Lavatory

Tooling to define repository specific retention policies in Artifactory.
Allows highly customizable retention policies via Python plugins.

See Lavatory Documentation [http://lavatory.readthedocs.io/en/latest/index.html] for the full docs.

Requirements

	Python 3.5+

	Artifactory user with API permissions

Authentication

This tool looks for 3 enviroment variables in order to authenticate:

ARTIFACTORY_URL - Base URL to use for Artifactory connections

ARTIFACTORY_USERNAME - Username to Artifactory

ARTIFACTORY_PASSWORD - Password for Artifactory

These will be loaded in at the beginning of a run and raise an exception
if missing.

Installing

From pypi:

pip install lavatory

Or install directly from the code:

git clone https://github.com/gogoair/lavatory
cd lavatory
pip install -U .

Running

$ lavatory --help
Usage: lavatory [OPTIONS] COMMAND [ARGS]...

 Lavatory is a tool for managing Artifactory Retention Policies.

Options:
 -v, --verbose Increases logging level.
 --help Show this message and exit.

Commands:
 purge Deletes artifacts based on retention policies.
 stats Get statistics of a repo.
 version Print version information.

Purging Artifacts

lavatory purge --policies-path=/path/to/policies

$ lavatory purge --help
Usage: lavatory purge [OPTIONS]

 Deletes artifacts based on retention policies.

Options:
 --policies-path TEXT Path to extra policies directory.
 --dryrun / --nodryrun Dryrun does not delete any artifacts.
 [default: True]
 --default / --no-default Applies default retention policy. [default:
 True]
 --repo TEXT Name of specific repository to run against.
 Can use --repo multiple times. If not
 provided, uses all repos.
 --repo-type [local|virtual|cache|any]
 The types of repositories to search for.
 [default: local]
 --help Show this message and exit.

If you want to run Lavatory against a specific repository, you can use --repo <repo_name>.
You can specify --repo as multiple times to run against multiple repos. If --repo is not
provided, Lavatory will run against all repos in Artifactory.

Getting Statistics

lavatory stats --repo test-local

$ lavatory stats --help
Usage: lavatory stats [OPTIONS]

 Get statistics of a repo.

Options:
 --repo TEXT Name of specific repository to run against. Can
 use --repo multiple times. If not provided, uses
 all repos.
 --help Show this message and exit.

Policies

See the Creating Retention Policies [http://lavatory.readthedocs.io/en/latest/policies/index.html] docs for more details on how
to create and use retention policies with Lavatory.

Listing Policies

Lavatory looks at a policy functions docstring in order to get a description. You can list all repos and a description
of the policy that would apply to them with the lavatory policies command.

$ lavatory policies --help
Usage: lavatory policies [OPTIONS]

 Prints out a JSON list of all repos and policy descriptions.

Options:
 --policies-path TEXT Path to extra policies directory.
 --repo TEXT Name of specific repository to run against.
 Can use --repo multiple times. If not
 provided, uses all repos.
 --repo-type [local|virtual|cache|any]
 The types of repositories to search for.
 [default: local]
 --help Show this message and exit.

Testing

pip install -r requirements-dev.txt
tox

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Authentication

Lavatory looks for several environment variables in order to authenticate:

ARTIFACTORY_URL - Base URL to use for Artifactory connections

ARTIFACTORY_USERNAME - Username to Artifactory

ARTIFACTORY_PASSWORD - Password for Artifactory

These will be loaded in at the beginning of a run and raise an exception
if these environment variables are missing.

Purging Artifacts

Creating a Basic Policy

For this documentation lets assume a repository named yum-local. In a new directory, outside of Lavatory, create
yum_local.py. This will be a retention policy that only impacts the yum-local repository.

In yum_local.py lets create a basic policy:

def purgelist(artifactory):
 """Policy to purge all artifacts older than 120 days"""
 purgable = artifactory.time_based_retention(keep_days=120)
 return purgable

The layout of the policy will look similar to

[root@localhost /]# tree path/
path
`-- to
 `-- policies
 `-- yum_local.py

Running Lavatory

To test the policy you just created you can run lavatory purge --policies-path=/path/to/policies --repo yum-local

Below are all the options for the purge command:

$ lavatory purge --help
Usage: lavatory purge [OPTIONS]

 Deletes artifacts based on retention policies

Options:
 --policies-path TEXT Path to extra policies directory
 --dryrun / --nodryrun Dryrun does not delete any artifacts. On by
 default
 --default / --no-default If false, does not apply default policy
 --repo TEXT Name of specific repository to run against. Can
 use --repo multiple times. If not provided, uses
 all repos.
 --help Show this message and exit.

If you want to run Lavatory against a specific repository, you can use --repo <repo_name>.
You can specify --repo as multiple times to run against multiple repos. If --repo is not
provided, Lavatory will run against all repos in Artifactory.

By default, Lavatory runs in drymode. Must include --nodryrun in order to
actually delete Artifacts

Configure SSL

When HTTPS Artifactory URL is provided, Lavatory uses certifi to get the
list of trusted certificates.

If your server’s certificate is not signed by any of certifi’s authorities,
you can either update the certifi’s list whose file system path can be retrieved
by the following command:

python -c "import certifi; print(certifi.where())"

or you can instruct Lavatory to use your own CA bundle file path by setting
the environment variable LAVATORY_CERTBUNDLE_PATH.

CLI Help

You can run any Lavatory command with --help for assistance.

Verbosity

Adding lavatory -v $command will increase logging verbosity.
You can add up to 5 v like lavatory -vvvvv $command for maximum
verbosity.

Creating Retention Policies

	Anatomy of a Policy

	Docstring Description

	Return Value

	Policy Helpers

	Time Based Retention

	Count Based Retention

	AQL Filtering

Lavatory policies are implemented as Python plugins. Each policy is a .py file named
after an Artifactory repository.

Each plugin represents one repository. The file name should match the repository name,
replacing - with _.

For example, the repository yum-local should have a retention policy named yum_local.py

Anatomy of a Policy

Each policy needs to provide one function, purgelist().
This function takes one argument, artifactory, which is an instance of the
lavatory.utils.artifactory.Artifactory class. This argument handles all communication
with artifactory.

This function needs to return a list of artifacts to delete.

Docstring Description

The docstring following the function definition will be used as the policy description.
This gets used in logging, as well as generating a list of all active policies.

Return Value

The return value of the policy should be a list of artifacts to delete.
The artifacts are a dictionary that at minimum needs a path and name key.
These keys are used by the delete function to remove the artifact.

path: path to artifact in the repository

name: Name of the artifact

Example Minimal Return:

[{ 'path': '222', 'name': 'Application-10.6.0-10.6.0.07-9cd3c33.iso'}]

This will delete artifact <repo_name>/222/Application-10.6.0-10.6.0.07-9cd3c33.iso

Policy Helpers

Below are some helper functions to assist in writing policies. These include
easy ways to do time-based retention, count-based retention, or searching with AQL.

Time Based Retention

This policy will purge any artifact in the repository older than 120 days.

def purgelist(artifactory):
 """Policy to purge all artifacts older than 120 days"""
 purgable = artifactory.time_based_retention(keep_days=120)
 return purgable

	
Artifactory.time_based_retention(keep_days=None, time_field='created', item_type='file', extra_aql=None)

	Retains artifacts based on number of days since creation.

extra_aql example: [{“@deployed”: {“$match”: “dev”}}, {“@deployed”: {“$nmatch”: “prod”}}]
This would search for artifacts that were created after <keep_days> with
property “deployed” equal to dev and not equal to prod.

	Parameters

	
	keep_days (int) – Number of days to keep an artifact.

	time_field (str) – The field of time to look at (created, modified, stat.downloaded).

	item_type (str) – The item type to search for (file/folder/any).

	extra_aql (list) –

	Returns

	List of artifacts matching retention policy

	Return type

	list

Count Based Retention

This policy will retain the last 5 artifacts of each project in a repository.

def purgelist(artifactory):
 """Policy to keep just the 5 most recent artifacts."""
 purgable = artifactory.count_based_retention(retention_count=5)
 return purgable

	
Artifactory.count_based_retention(retention_count=None, project_depth=2, artifact_depth=3, item_type='folder', extra_aql=None)

	Return all artifacts except the <count> most recent.

	Parameters

	
	retention_count (int) – Number of artifacts to keep.

	project_depth (int) – how far down the Artifactory folder hierarchy to look for projects.

	artifact_depth (int) – how far down the Artifactory folder hierarchy to look for specific artifacts.

	item_type (str) – The item type to search for (file/folder/any).

	extra_aql (list) –

	Returns

	List of all artifacts to delete.

	Return type

	list

AQL Filtering

You can also use AQL to search for artifacts if you need more control than the
count-based retention or time-based retention helps.

def purgelist(artifactory):
 """Policy to purge artifacts with deployed property of dev and not prod."""
 aql_terms = [{"@deployed": {"$match": "dev"}}, {"@deployed": {"$nmatch": "prod"}}]
 extra_fields = ['property.*']
 purgable = artifactory.filter(terms=aql_terms, fields=extra_fields, depth=None, item_type="any")
 return purgable

All of the terms in aql_terms will be ANDed together and searched.

The above policy would use the below full AQL to search for artifacts.

items.find({"$and": [{"@deployed": {"$match": "dev"}},
 {"@deployed": {"$nmatch": "prod"}}, {"path": {"$nmatch": "*/repodata"}},
 {"repo": {"$eq": "yum-local"}}, {"type": {"$eq": "any"}}]}).include("stat", "property.*")

	
Artifactory.filter(terms=None, depth=3, sort=None, offset=0, limit=0, fields=None, item_type='folder')

	Get a subset of artifacts from the specified repo.
This looks at the project level, but actually need to iterate lower at project level

This method does not use pagination. It assumes that this utility
will be called on a repo sufficiently frequently that removing just
the default n items will be enough.

	Parameters

	
	terms (list) – an array of jql snippets that will be ANDed together

	depth (int, optional) – how far down the folder hierarchy to look

	fields (list) – Fields

	sort (dict) – How to sort Artifactory results

	offset (int) – how many items from the beginning of the list should be skipped (optional)

	limit (int) – the maximum number of entries to return (optional)

	item_type (str) – The item type to search for (file/folder/any).

	Returns

	List of artifacts returned from query

	Return type

	list

Example Policies

	Keep last 120 days of artifacts

	Keep artifacts downloaded in the last 60 days

	Keep 5 most recent artifacts

	Keep artifacts with specific properties

	Keep all artifacts

	Move artifacts to a different repo after 3 days.

	More complicated examples

These are example policies for different retention use-cases

Keep last 120 days of artifacts

def purgelist(artifactory):
 """Policy to purge all artifacts older than 120 days"""
 purgable = artifactory.time_based_retention(keep_days=120)
 return purgable

Keep artifacts downloaded in the last 60 days

def purgelist(artifactory):
 """Policy to purge all artifacts not downloaded in last 60 days"""
 purgeable = artifactory.time_based_retention(keep_days=60, time_field='stat.downloaded')
 return purgeable

Keep 5 most recent artifacts

def purgelist(artifactory):
 """Policy to keep just the 5 most recent artifacts."""
 purgeable = artifactory.count_based_retention(retention_count=5)
 return purgeable

Keep artifacts with specific properties

def purgelist(artifactory):
 """Policy to purge artifacts with deployed property of dev and not prod."""
 aql_terms = [{"@deployed": {"$match": "dev"}}, {"@deployed": {"$nmatch": "prod"}}]
 extra_fields = ['property.*']
 purgeable = artifactory.filter(terms=aql_terms, fields=extra_fields, depth=None, item_type="any")
 return purgeable

Keep all artifacts

def purgelist(artifactory):
 """Keep artifacts indefinitely."""
 return []

Move artifacts to a different repo after 3 days.

def purgelist(artifactory):
 """Moves artifacts to yum-local after 3 days."""
 movable = artifactory.time_based_retention(keep_days=3)
 artifactory.move_artifacts(artifacts=movable, dest_repository='yum-local')
 return []

More complicated examples

def purgelist(artifactory):
 """Purges artifacts that have not been downloaded in the last month,
 That do not have a build.correlation_id,
 and are not in the */latest path."""

 docker_terms = [{ "stat.downloaded": { "$before": "1mo" }},
 { "@build.correlation_ids": { "$nmatch": "*" }},
 { "name": { "$match": "manifest.json" }},
 { "path": { "$nmatch": "*/latest" }}
]
 purgeable = artifactory.filter(terms=docker_terms, depth=None, item_type="file")

 return purgeable

def purgelist(artifactory):
 """If deployed to prod, keep artifact forever,
 if deployed to stage, keep 30 days,
 if deployed to dev, keep 21 days,
 if never deployed, keep 30 days."""

 not_deployed = [{ "@deployed": { "$nmatch": "*" }}]

 only_dev = [{ "@deployed": { "$match": "*dev*"} },
 { "@deployed": {"$nmatch": "*prod*"} },
 { "@deployed": { "$nmatch": "*stage*"} }
]

 only_stage = [{ "@deployed": { "$match": "*stage*"} },
 { "@deployed": {"$nmatch": "*prod*"} },
]

 undeployed_purgeable = artifactory.time_based_retention(keep_days=30, extra_aql=not_deployed)
 only_dev_purgeable = artifactory.time_based_retention(keep_days=21, extra_aql=only_dev)
 only_stage_purgeable = artifactory.time_based_retention(keep_days=30, extra_aql=only_dev)

 all_purgeable = undeployed_purgeable + only_dev_purgeable + only_stage_purgeable
 return all_purgeable

How To Create Releases

Setup

Add the following to ~/.pypirc file

[distutils]
index-servers =
 pypi

[pypi]
repository = https://pypi.python.org/pypi
username = username
password = xxxyyyzzz

Upload Release

When releasing a new version, the following needs to occur:

	Ensure all test via tox pass

	Add version Tag

git tag -a v#.#.#
git push --tags

	Generate and upload the package

python3 setup.py bdist_wheel upload -r pypi

src

	lavatory package
	Subpackages
	lavatory.commands package
	Submodules

	lavatory.commands.policies module

	lavatory.commands.purge module

	lavatory.commands.stats module

	Module contents

	lavatory.policies package
	Submodules

	lavatory.policies.default module

	Module contents

	lavatory.utils package
	Submodules

	lavatory.utils.artifactory module

	lavatory.utils.get_artifactory_info module

	lavatory.utils.performance module

	lavatory.utils.setup_pluginbase module

	Module contents

	Submodules

	lavatory.consts module

	lavatory.credentials module

	lavatory.exceptions module

	Module contents

lavatory package

Subpackages

	lavatory.commands package
	Submodules

	lavatory.commands.policies module

	lavatory.commands.purge module

	lavatory.commands.stats module

	Module contents

	lavatory.policies package
	Submodules

	lavatory.policies.default module

	Module contents

	lavatory.utils package
	Submodules

	lavatory.utils.artifactory module

	lavatory.utils.get_artifactory_info module

	lavatory.utils.performance module

	lavatory.utils.setup_pluginbase module

	Module contents

Submodules

lavatory.consts module

lavatory.credentials module

	
lavatory.credentials.load_credentials()

	

lavatory.exceptions module

Lavatory related custom exceptions

	
exception lavatory.exceptions.InvalidPoliciesDirectory

	Bases: lavatory.exceptions.LavatoryError

Extra policies directory is invalid or missing

	
exception lavatory.exceptions.LavatoryError

	Bases: Exception

Lavatory related error

	
exception lavatory.exceptions.MissingEnvironmentVariable(missing_var)

	Bases: lavatory.exceptions.LavatoryError

Required environment variable is missing

Module contents

lavatory.commands package

Submodules

lavatory.commands.policies module

List policies and descriptions

	
lavatory.commands.policies.get_description(plugin_source, repository)

	Given a repository and plugin source, gets policy description.

	Parameters

	
	plugin_source (PluginBase) – The source of plugins from PluginBase.

	repository (str) – The name fo the repository to get policy description.

	Returns

	A dictionary of repo name and policy description

	Return type

	dict

lavatory.commands.purge module

Purges artifacts.

	
lavatory.commands.purge.apply_purge_policies(selected_repos, policies_path=None, dryrun=True, default=True)

	Sets up the plugins to find purgable artifacts and delete them.

	Parameters

	
	selected_repos (list) – List of repos to run against.

	policies_path (str) – Path to extra policies

	dryrun (bool) – If true, will not actually delete artifacts.

	default (bool) – If true, applies default policy to repos with no specific policy.

	
lavatory.commands.purge.generate_purge_report(purged_repos, before_purge_data)

	Generates a performance report based on deleted artifacts.

	Parameters

	
	purged_repos (list) – List of repos that had policy applied.

	before_purge_data (dict) – Data on the state of Artifactory before purged artifacts

lavatory.commands.stats module

Statistics of the repo.

Module contents

lavatory.policies package

Submodules

lavatory.policies.default module

	
lavatory.policies.default.purgelist(artifactory)

	Default Policy. Keeps the last 5 artifacts from each project

Module contents

lavatory.utils package

Submodules

lavatory.utils.artifactory module

Artifactory purger module.

	
class lavatory.utils.artifactory.Artifactory(repo_name=None)

	Bases: object

Artifactory purger class.

	
count_based_retention(retention_count=None, project_depth=2, artifact_depth=3, item_type='folder', extra_aql=None)

	Return all artifacts except the <count> most recent.

	Parameters

	
	retention_count (int) – Number of artifacts to keep.

	project_depth (int) – how far down the Artifactory folder hierarchy to look for projects.

	artifact_depth (int) – how far down the Artifactory folder hierarchy to look for specific artifacts.

	item_type (str) – The item type to search for (file/folder/any).

	extra_aql (list) –

	Returns

	List of all artifacts to delete.

	Return type

	list

	
filter(terms=None, depth=3, sort=None, offset=0, limit=0, fields=None, item_type='folder')

	Get a subset of artifacts from the specified repo.
This looks at the project level, but actually need to iterate lower at project level

This method does not use pagination. It assumes that this utility
will be called on a repo sufficiently frequently that removing just
the default n items will be enough.

	Parameters

	
	terms (list) – an array of jql snippets that will be ANDed together

	depth (int, optional) – how far down the folder hierarchy to look

	fields (list) – Fields

	sort (dict) – How to sort Artifactory results

	offset (int) – how many items from the beginning of the list should be skipped (optional)

	limit (int) – the maximum number of entries to return (optional)

	item_type (str) – The item type to search for (file/folder/any).

	Returns

	List of artifacts returned from query

	Return type

	list

	
get_all_repo_artifacts(depth=None, item_type='file', with_properties=True)

	returns all artifacts in a repo with metadata

	Parameters

	
	depth (int) – How far down Artifactory folder to look. None will go to bottom of folder.

	item_type (str) – The item type to search for (file/folder/any).

	with_properties (bool) – Include artifact properties or not.

	Returns

	List of all artifacts in a repository.

	Return type

	list

	
get_artifact_properties(artifact)

	Given an artifact, queries for properties from artifact URL

	Parameters

	artifact (dict) – Dictionary of artifact info. Needs artifact[‘name’] and [‘path’].

	Returns

	Dictionary of all properties on specific artifact

	Return type

	dict

	
move_artifacts(artifacts=None, dest_repository=None)

	Moves a list of artifacts to dest_repository.

	Parameters

	
	artifacts (list) – List of artifacts to move.

	dest_repository (str) – The name of the destination repo.

	
purge(dry_run, artifacts)

	Purge artifacts from the specified repo.

	Parameters

	
	dry_run (bool) – Dry run mode True/False

	artifacts (list) – Artifacts.

	Returns

	Count purged.

	Return type

	purged (int)

	
repos(repo_type='local')

	Return a dictionary of repos with basic info about each.

	Parameters

	repo_type (str) – Type of repository to list. (local/virtual/cache/any)

	Returns

	Dictionary of repos.

	Return type

	repos (dict)

	
time_based_retention(keep_days=None, time_field='created', item_type='file', extra_aql=None)

	Retains artifacts based on number of days since creation.

extra_aql example: [{“@deployed”: {“$match”: “dev”}}, {“@deployed”: {“$nmatch”: “prod”}}]
This would search for artifacts that were created after <keep_days> with
property “deployed” equal to dev and not equal to prod.

	Parameters

	
	keep_days (int) – Number of days to keep an artifact.

	time_field (str) – The field of time to look at (created, modified, stat.downloaded).

	item_type (str) – The item type to search for (file/folder/any).

	extra_aql (list) –

	Returns

	List of artifacts matching retention policy

	Return type

	list

lavatory.utils.get_artifactory_info module

Helper method for getting artifactory information.

	
lavatory.utils.get_artifactory_info.get_artifactory_info(repo_names=None, repo_type='local')

	Get storage info from Artifactory.

	Parameters

	
	repo_names (tuple, optional) – Name of artifactory repo.

	repo_type (str) – Type of artifactory repo.

	Returns

	Dictionary of repo data.
storage_info (dict): Storage information api call.

	Return type

	keys (dict, optional)

	
lavatory.utils.get_artifactory_info.get_repos(repo_names=None, repo_type='local')

	

	
lavatory.utils.get_artifactory_info.get_storage(repo_names=None, repo_type=None)

	

lavatory.utils.performance module

Performance comparison

	
lavatory.utils.performance.get_percentage(old, new)

	Gets percentage from old and new values

	Parameters

	
	old (num) – old value

	new (num) – new value

	Returns

	Percentage, or zero if none

	Return type

	number

	
lavatory.utils.performance.get_performance_report(repo_name, old_info, new_info)

	compares retention policy performance, showing old amount of space and new.

	Parameters

	
	repo_name (str) – Name of repository

	old_info (dict) – Metadata of repository before run

	new_info (dict) – Metadata of repository after run

lavatory.utils.setup_pluginbase module

	
lavatory.utils.setup_pluginbase.get_directory_path(directory)

	Gets policy from plugin_source.

	Parameters

	directory (Path) – Directory path

	Returns

	The full expanded directory path

	Return type

	full_path (Path)

	
lavatory.utils.setup_pluginbase.get_policy(plugin_source, repository, default=True)

	Gets policy from plugin_source.

	Parameters

	
	plugin_source (PluginBase) – the plugin source from loading plugin_base.

	repository (string) – Name of repository.

	default (bool) – If to load the default policy.

	Returns

	The policy python module.

	Return type

	policy (func)

	
lavatory.utils.setup_pluginbase.setup_pluginbase(extra_policies_path=None)

	Sets up plugin base with default path and provided path

	Parameters

	extra_policies_path (str) – Extra path to find plugins in

	Returns

	PluginBase PluginSource for finding plugins

	Return type

	PluginSource

Module contents

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lavatory	

 	
 	
 lavatory.commands	

 	
 	
 lavatory.commands.policies	

 	
 	
 lavatory.commands.purge	

 	
 	
 lavatory.commands.stats	

 	
 	
 lavatory.consts	

 	
 	
 lavatory.credentials	

 	
 	
 lavatory.exceptions	

 	
 	
 lavatory.policies	

 	
 	
 lavatory.policies.default	

 	
 	
 lavatory.utils	

 	
 	
 lavatory.utils.artifactory	

 	
 	
 lavatory.utils.get_artifactory_info	

 	
 	
 lavatory.utils.performance	

 	
 	
 lavatory.utils.setup_pluginbase	

Index

 A
 | C
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T

A

 	
 	apply_purge_policies() (in module lavatory.commands.purge)

 	
 	Artifactory (class in lavatory.utils.artifactory)

C

 	
 	count_based_retention() (lavatory.utils.artifactory.Artifactory method), [1], [2]

F

 	
 	filter() (lavatory.utils.artifactory.Artifactory method), [1], [2]

G

 	
 	generate_purge_report() (in module lavatory.commands.purge)

 	get_all_repo_artifacts() (lavatory.utils.artifactory.Artifactory method)

 	get_artifact_properties() (lavatory.utils.artifactory.Artifactory method)

 	get_artifactory_info() (in module lavatory.utils.get_artifactory_info)

 	get_description() (in module lavatory.commands.policies)

 	
 	get_directory_path() (in module lavatory.utils.setup_pluginbase)

 	get_percentage() (in module lavatory.utils.performance)

 	get_performance_report() (in module lavatory.utils.performance)

 	get_policy() (in module lavatory.utils.setup_pluginbase)

 	get_repos() (in module lavatory.utils.get_artifactory_info)

 	get_storage() (in module lavatory.utils.get_artifactory_info)

I

 	
 	InvalidPoliciesDirectory

L

 	
 	lavatory (module)

 	lavatory.commands (module)

 	lavatory.commands.policies (module)

 	lavatory.commands.purge (module)

 	lavatory.commands.stats (module)

 	lavatory.consts (module)

 	lavatory.credentials (module)

 	lavatory.exceptions (module)

 	
 	lavatory.policies (module)

 	lavatory.policies.default (module)

 	lavatory.utils (module)

 	lavatory.utils.artifactory (module)

 	lavatory.utils.get_artifactory_info (module)

 	lavatory.utils.performance (module)

 	lavatory.utils.setup_pluginbase (module)

 	LavatoryError

 	load_credentials() (in module lavatory.credentials)

M

 	
 	MissingEnvironmentVariable

 	
 	move_artifacts() (lavatory.utils.artifactory.Artifactory method)

P

 	
 	purge() (lavatory.utils.artifactory.Artifactory method)

 	
 	purgelist() (in module lavatory.policies.default)

R

 	
 	repos() (lavatory.utils.artifactory.Artifactory method)

S

 	
 	setup_pluginbase() (in module lavatory.utils.setup_pluginbase)

T

 	
 	time_based_retention() (lavatory.utils.artifactory.Artifactory method), [1], [2]

Policy Helpers

Below are some helper functions to assist in writing policies. These include
easy ways to do time-based retention, count-based retention, or searching with AQL.

Time Based Retention

This policy will purge any artifact in the repository older than 120 days.

def purgelist(artifactory):
 """Policy to purge all artifacts older than 120 days"""
 purgable = artifactory.time_based_retention(keep_days=120)
 return purgable

	
Artifactory.time_based_retention(keep_days=None, time_field='created', item_type='file', extra_aql=None)

	Retains artifacts based on number of days since creation.

extra_aql example: [{“@deployed”: {“$match”: “dev”}}, {“@deployed”: {“$nmatch”: “prod”}}]
This would search for artifacts that were created after <keep_days> with
property “deployed” equal to dev and not equal to prod.

	Parameters

	
	keep_days (int) – Number of days to keep an artifact.

	time_field (str) – The field of time to look at (created, modified, stat.downloaded).

	item_type (str) – The item type to search for (file/folder/any).

	extra_aql (list) –

	Returns

	List of artifacts matching retention policy

	Return type

	list

Count Based Retention

This policy will retain the last 5 artifacts of each project in a repository.

def purgelist(artifactory):
 """Policy to keep just the 5 most recent artifacts."""
 purgable = artifactory.count_based_retention(retention_count=5)
 return purgable

	
Artifactory.count_based_retention(retention_count=None, project_depth=2, artifact_depth=3, item_type='folder', extra_aql=None)

	Return all artifacts except the <count> most recent.

	Parameters

	
	retention_count (int) – Number of artifacts to keep.

	project_depth (int) – how far down the Artifactory folder hierarchy to look for projects.

	artifact_depth (int) – how far down the Artifactory folder hierarchy to look for specific artifacts.

	item_type (str) – The item type to search for (file/folder/any).

	extra_aql (list) –

	Returns

	List of all artifacts to delete.

	Return type

	list

AQL Filtering

You can also use AQL to search for artifacts if you need more control than the
count-based retention or time-based retention helps.

def purgelist(artifactory):
 """Policy to purge artifacts with deployed property of dev and not prod."""
 aql_terms = [{"@deployed": {"$match": "dev"}}, {"@deployed": {"$nmatch": "prod"}}]
 extra_fields = ['property.*']
 purgable = artifactory.filter(terms=aql_terms, fields=extra_fields, depth=None, item_type="any")
 return purgable

All of the terms in aql_terms will be ANDed together and searched.

The above policy would use the below full AQL to search for artifacts.

items.find({"$and": [{"@deployed": {"$match": "dev"}},
 {"@deployed": {"$nmatch": "prod"}}, {"path": {"$nmatch": "*/repodata"}},
 {"repo": {"$eq": "yum-local"}}, {"type": {"$eq": "any"}}]}).include("stat", "property.*")

	
Artifactory.filter(terms=None, depth=3, sort=None, offset=0, limit=0, fields=None, item_type='folder')

	Get a subset of artifacts from the specified repo.
This looks at the project level, but actually need to iterate lower at project level

This method does not use pagination. It assumes that this utility
will be called on a repo sufficiently frequently that removing just
the default n items will be enough.

	Parameters

	
	terms (list) – an array of jql snippets that will be ANDed together

	depth (int, optional) – how far down the folder hierarchy to look

	fields (list) – Fields

	sort (dict) – How to sort Artifactory results

	offset (int) – how many items from the beginning of the list should be skipped (optional)

	limit (int) – the maximum number of entries to return (optional)

	item_type (str) – The item type to search for (file/folder/any).

	Returns

	List of artifacts returned from query

	Return type

	list

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to lavatory’s documentation!

 		
 Getting Started

 		
 Creating Retention Policies

 		
 Example Policies

 		
 How To Create Releases

 		
 src

 		
 lavatory package

 		
 lavatory.commands package

 		
 lavatory.policies package

 		
 lavatory.utils package

_static/up.png

